Publicação científica trimestral do CREMERJ

82 Diagnóstico e terapêutica dos Transtornos de Ansiedade Laiana A. Quagliato, Antonio E. Nardi Med. Ciên. e Arte , Rio de Janeiro, v.1, n.1, p.77-83, jan-mar 2022 CONCLUSÃO Os transtornos de ansiedade são con- dições altamente prevalentes que causam grande ônus para a sociedade. A grande maioria dos transtornos de ansiedade per- manece subdiagnosticada e não é tratada por diversos motivos. É importante que os indivíduos que sofram com algum trans- torno de ansiedade recebam o diagnóstico precoce e realizem tratamento adequado, uma vez que só assim reduziremos o ônus desses transtornos e poderemos minimizar o sofrimento dos pacientes e melhorar a sua qualidade de vida. REFERÊNCIAS 1. Russell JA. A circumplex model of affect. Journal of personality and social psychology 39, 1161 (1980). 2. Nardi AE, Fontenelle LF. & Crippa JAS. New trends in anxiety disorders. Brazilian Journal of Psychiatry 34, 5-6 (2012). 3. Davis M. et al. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35, 105 (2010). 4. APA. Diagnostic and statistical manual of mental disorders: DSM-5 TM , 5th ed. Arlington, VA, US: American Psychiatric Publishing, Inc.; 2013. 5. Beesdo K, Knappe S. & Pine DS. Anxiety and anxiety disorders in children and adolescents: developmental issues and implications for DSM‑V. Psychiatry Clinical North America 32, 483–524 (2009). 6. Freeston MH, Rhéaume J, Letarte H, Dugas MJ, Ladouceur R. Why do people worry? Personality and individual differences.17(6):791-802 (1994). 7. Roy‑Byrne PP. et al. Anxiety disorders and comorbid medical illness. General Hospital Psychiatry 30, 208–225 (2008). 8. Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proceedings of the National Academy of Sciences.107(28):12692-7 (2010). 9. Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 468(7321):277 (2010). 10. Cai H, Haubensak W, Anthony TE, Anderson DJ. Central amygdala PKC- δ + neurons mediate the influence of multiple anorexigenic signals. Nature neuroscience. 17(9):1240 (2014). 11. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature. 468(7321):270 (2010). 12. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B. Experience-dependent modification of a central amygdala fear circuit. Nature neuroscience. 16(3):332 (2013). 13. Penzo MA, Robert V, Li B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. Journal of Neuroscience. 34(7):2432-7 (2014). 14. Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 519(7544):455 (2015). 15. CullinanWE, Herman JP, Watson SJ. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. Journal of Comparative Neurology. 332(1):1-20 (1993). 16. Dong H-W, Petrovich GD, Swanson LW. Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain research reviews. 38(1-2):192-246 (2001).

RkJQdWJsaXNoZXIy ODA0MDU2